High-Polarization-Discriminating Infrared Detection Using a Single Quantum Well Sandwiched in Plasmonic Micro-Cavity

نویسندگان

  • Qian Li
  • ZhiFeng Li
  • Ning Li
  • XiaoShuang Chen
  • PingPing Chen
  • XueChu Shen
  • Wei Lu
چکیده

Polarimetric imaging has proved its value in medical diagnostics, bionics, remote sensing, astronomy, and in many other wide fields. Pixel-level solid monolithically integrated polarimetric imaging photo-detectors are the trend for infrared polarimetric imaging devices. For better polarimetric imaging performance the high polarization discriminating detectors are very much critical. Here we demonstrate the high infrared light polarization resolving capabilities of a quantum well (QW) detector in hybrid structure of single QW and plasmonic micro-cavity that uses QW as an active structure in the near field regime of plasmonic effect enhanced cavity, in which the photoelectric conversion in such a plasmonic micro-cavity has been realized. The detector's extinction ratio reaches 65 at the wavelength of 14.7 μm, about 6 times enhanced in such a type of pixel-level polarization long wave infrared photodetectors. The enhancement mechanism is attributed to artificial plasmonic modulation on optical propagation and distribution in the plasmonic micro-cavities.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Coherent Transport of Single Photon in a Quantum Super-cavity with Mirrors Composed of Λ-Type Three-level Atomic Ensembles

In this paper, we study the coherent transport of single photon in a coupled resonator waveguide (CRW) where two threelevel Λ-type atomic ensembles are embedded in two separate cavities. We show that it is possible to control the photon transmission and reflection coefficients by using classical control fields. In particular, we find that the total photon transmission and reflection are achieva...

متن کامل

Design of plasmonic photonic crystal resonant cavities for polarization sensitive infrared photodetectors.

We design a polarization-sensitive resonator for use in mid-infrared photodetectors, utilizing a photonic crystal cavity and a single or double-metal plasmonic waveguide to achieve enhanced detector efficiency due to superior optical confinement within the active region. As the cavity is highly frequency and polarization-sensitive, this resonator structure could be used in chip-based infrared s...

متن کامل

Plasmonic light harvesting for multicolor infrared thermal detection.

Here we combined experiments and theory to study the optical properties of a plasmonic cavity consisting of a perforated metal film and a flat metal sheet separated by a semiconductor spacer. Three different types of optical modes are clearly identified-the propagating and localized surface plasmons on the perforated metal film and the Fabry-Perot modes inside the cavity. Interactions among the...

متن کامل

Vacuum Rabi splitting in a plasmonic cavity at the single quantum emitter limit

The strong interaction of individual quantum emitters with resonant cavities is of fundamental interest for understanding light-matter interactions. Plasmonic cavities hold the promise of attaining the strong coupling regime even under ambient conditions and within subdiffraction volumes. Recent experiments revealed strong coupling between individual plasmonic structures and multiple organic mo...

متن کامل

Monolithically integrated mid-infrared sensor using narrow mode operation and temperature feedback

Articles you may be interested in Plasmonic lens enhanced mid-infrared quantum cascade detector Appl. A surface-emitting distributed-feedback plasmonic laser Appl. High-performance operation of single-mode terahertz quantum cascade lasers with metallic gratings Appl.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 4  شماره 

صفحات  -

تاریخ انتشار 2014